

Lidar Development

Weather Accident Prevention (WxAP) Annual Project Review

Hampton, Virginia, Radisson Hotel May 23-25, 2000

Stephen M. Hannon Coherent Technologies, Inc.

Overview

- Background information
- Technical accomplishments to date
 - algorithm development and performance simulation
 - flight test activities
- Plans

Turbulence Initiators

- Convective Storms (within and as far as 40 miles away from visible clouds in clear air)
- Jet Stream (at confluence of multiple streams and near boundaries)
- Mountain Wave (upward propagating from disturbances near the surface)

Localized "events" like these are extremely difficult to reliably forecast

Turbulence Product Development Team Objective

- Develop Means of Achieving Reliable Tactical Warning
 - Provide Timely Warning to Deviate or to Institute Cabin Safety
 Measures
 - Provide Real-Time Alerts to AWIN Network

Complete Detection Capability Provided through Dual Wavelength Radar

Aviation Safety Program

Objective:
Develop a robust detection capability that spans the full range of turbulence environments

0 dBZ

10 dBZ

30 dBZ

50 dBZ

X-Band Radar

Lidar units

 $-100 dB\beta$

 $-80 dB\beta$

-60 dB β

 $-40 \text{ dB}\beta$

Reflectivity

TDAM 1998 Accomplishments: Lidar

Aviation Safety Program

Juneau lidar deployment

- characterization of low altitude windshear and turbulence
- generated validated data sets to support development of lidar turbulence and windshear detection algorithms

ACLAIM/Electra flights

- Detected light to moderate turbulence at ranges between 3 and 6 miles ahead
- Penetrated turbulence to verify
- Operated 15 hours in a variety of conditions from ground to 25kft

Sample Doppler Spectrum from ACLAIM/Electra

Aviation Safety Program

Isolated moderate to severe turbulence patch ahead

Detected turbulence and later penetrated it for confirmation

Background: Demonstration of Lidar Turbulence Detection

Good Correlation with Onboard Data (Flight 2)

LidarFile=d:\raspprd\electra\d3261702.prd.los
NavFile=d:\raspprd\electra\nav\802rf02 1646 1717.asc
NavFile=d:\raspprd\electra\nav\802rf02 1646 1717.asc
StartTime=1715:05, EndTime=1717:00 IntegWidth= 5.0sec

Correlation of 1.3 km lagged structure function about as good as that between rms acceleration and rms vertical velocity

Industry Consortium Formed in 1999

Aviation Safety Program

<u>Honeywell</u>

- CTI and Honeywell agreement to develop a hybrid turbulence detection system
 - microwave radar combined with infrared radar
 - cover full range of turbulence events
 - additional capability for winds aloft detection (fuel savings)
- United Airlines is critical third member of the team
 - in-kind support, including definition of operational requirements
- Status:
 - CAT IR product development team in place and funded
 - Primary activities are focusing on cost reduction, reliability improvement and flight evaluations

CAT Product Development: Needs

- CAT product development represents a partnership between the CTI/Honeywell/UAL team and NASA AvSP
- Lidar needs are similar to those for microwave radar and include
 - definition and characterization of hazard
 - hazard algorithm for quantifying the threat
 - validated algorithm(s) for using the IR radar to detect and quantify the threat
 - simulation test case development
 - validated system performance with properly designed field tests

SUPPORTED MILESTONES

Program Assets and Resources: Government Agency and Industry

Aviation Safety Program

AFRL System for Precision Air Drop

NASA/ACLAIM System

CTI/ARO MAG-1 Transceiver (future)

Flight Testing: Objectives and Needs

Aviation Safety Program

More flight hours at cruise altitudes

- identified as a major gap
- detecting severe turbulence requires a large number of flight hours
- More flight hours in moderate or stronger turbulence
 - mid-level altitudes with focus on convective (storm) and breaking wave turbulence
 - performance envelope for onboard radar and lidar
- Extended data sets for aerosol/turbulence correlation modeling
- Scanning versus single line of sight configuration
 - scanning will enable better characterization of turbulent events
 - more direct comparison with radar for joint tests
 - include a mixture of both modes

FY00/01 Flight Test Objectives

Aviation Safety Program

B-757 flight tests

- joint with other WxAP tests
- primarily focus on convective turbulence
- joint data for post-flight correlation with
 - radar measurements
 - in-situ

DC-8 flight tests

- lidar operates in a piggy-back fashion
- joint data for post-flight correlation with
 - in-situ
 - aerosol particle measurements
- support lidar performance scaling and algorithm development efforts

B-757 Layout

B-757 Lidar Installation and Flight Test Status/Plans

- NASA SRR held in February
- Lidar installation location has been finalized
- Initial design for fairing and rack assembly
 - design review schedule is being updated
- AFRL equipment at CTI and regular readiness checks will be ongoing until palette installation
- Flights anticipated in early CY01
 - joint with radar

DC-8 Flight Test Status

- DC-8 recent volcanic ash encounter
 - engine replacement required
- Initial flight window (August) dropped
 - Air-Sci program cancelled
- Alternate flight window under evaluation
 - AFWEX DC-8 flights scheduled for December
 - nighttime flights: 40 hrs total
 - evaluating potential conflict with other instrumentation

Industry Flight Tests

- Flights aboard Honeywell-owned B-720
- Scheduled for July/August, 2000
 - focus on cruise altitude operation
 - validate performance models
- Future flights...
 - Addition of an RDR-4B windshear radar planned in October, 2000
 - Joint radar/lidar tests in CY01

Lidar Algorithm Development Objective

- Develop reliable detection algorithms for prediction of turbulence hazard ahead using Doppler lidar
 - exploit understanding of unique aspects of lidar phenomenology
 - incorporate common aspects of radar developments

Lidar Algorithm Development and Simulation: Leveraging

Aviation Safety Program

CIRES/NCAR:

- Space Lidar for NASA (SPARCLE)
- extending detailed simulations

• CTI

- simulation for wake vortex detection
- existing real-time algorithms
- Synergy with radar
 - NCAR and RTI developments

Results in cost-effective development with near-term results

Lidar Algorithm and Simulation Activities

Aviation Safety Program

• FY99/00 Activities/Approach:

- focus on single line of sight algorithms/analyses only and leverage existing tools
- pursue structure function and spectral-width-based algorithms
 - small SNR regime: long range (longer warning times)
 - <u>large SNR regime</u>: correlation of vertical loading with longitudinal observations

 develop <u>preliminary</u> performance predictions based on combination of simulated and flight test data

 truth metrics initially limited (simulation using 2DOF a/c)

Detection Issues

Aviation Safety Program

- Detection/False Alert must consider the random nature of turbulence
 - multiple turbulence warning levels
 - multiple turbulence classes/types
 - viewing longitudinal velocity behavior and inferring the vertical
- Definition of errors required (not just Type I and Type II)
 - common issue for radar/lidar
 - must minimize scatter

Lidar Observable (Velocity Structure Function or Spectral Width)

Demonstration of Lidar Turbulence Detection

Good Correlation with Onboard Data out to 40 sec Lag (Flight 2)

Aviation Safety Program

Time Evolution, Beam Pointing
Jitter (A/C Pitch) Can Reduce
Accuracy for Long Lags

Lidar Algorithm and Simulation: Plans

Aviation Safety Program

• **FY00-02 Approach**:

- maintain synergy with radar algorithm development
- establish SNR requirements and averaging/resolution/performance trade for spectral width and structure function algorithms
- establish link to hazard metric algorithm(s)
- incorporate test cases in more sophisticated simulation
- test on additional data sets (joint lidar/radar test data)
- produce more robust performance predictions and feed back into algo devel
 - false alarm mitigation

Lidar Summary

- Emphasis areas
 - flight testing
 - algorithm development and associated performance analyses
- Flight tests planned for late CY00, early CY01
 - B-757 flights in early CY01, joint with radar
 - piggy-back DC-8 flights uncertain, but may occur in December
 - Industry-funded B-720 flights
- Algorithm work highly leveraged
 - NCAR and CTI developments
 - synergy with radar work (NCAR & RTI)
- Parallel industry program to develop a clear air turbulence product
 - focus is on cost reduction and reliability improvement

